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Abstract

Bayesian approaches for causal discovery can—in principle—quantify uncertainty in the
prediction of the underlying causal structure, typically modeled by a directed acyclic
graph (DAG). Various semi-implicit models for parametrized distributions over DAGs have
been proposed, but their limitations have not been studied thoroughly. In this work, we
focus on the expressiveness of parametrized distributions over DAGs in the context of causal
structure learning and show several limitations of candidate models in a theoretical anal-
ysis and validate them in experiments. To overcome them, we propose mixture models of
distributions over DAGs.

1 Introduction

Causal discovery, also known as causal structure learning (CSL), is the task of uncovering cause and effect
relations among modeled variables based on observed data (Glymour et al., 2019; Squires & Uhler, 2022). The
inferred structures govern the translation of a causal estimand into a statistical one that can be measured
from data and, hence, provide a basis for causal inference (Pearl, 2009; Lundberg et al., 2021). Errors
in causal discovery can imply different statistical estimands and bias the analysis of causal queries. This
dependence highlights the importance of quantifying the uncertainty of a predicted causal structure.

Bayesian CSL goes beyond identifying only a single, potentially incorrect, causal structure and rather models
the uncertainty over the true causal structure by a distribution. It incorporates prior knowledge in the form
of a prior distribution and in principle enables the computation of a posterior distribution over possible causal
structure when new evidence is presented. Typical assumptions for causal discovery are causal sufficiency,
the absence of selection bias, and acyclicity of the causal graph, allowing to represent the causal structure
by a directed acyclic graph (DAG). When modeling the data-generating mechanism for such acyclic causal
model, two sources of error can be distinguished. The approximation error results from the finite amount of
evidence for the prediction of the possibly nonlinear relations among the observed variables and decreases
with increasing data size. Conversely, the model choices for the functional relationships and the distribution
over the causal graph introduce a model error that cannot be overcome with more data.

Novel Bayesian CSL algorithms often differ not only in a single model choice, but multiple ones and seldom
identify in ablation studies for all of them which key detail is responsible for the reported increase in
performance in contrast to competing algorithms. While a branch of research focuses exclusively on the
functional relationships and parametric forms that allow identification of cause and effect pairs (Shimizu
et al., 2006; Hoyer et al., 2008; Zhang & Hyvärinen, 2009; Loh & Bühlmann, 2014; Immer et al., 2023),
distributions over causal graphs, e.g., DAGs, have received only little attention yet.

Contributions In our work, we investigate and compare the expressiveness of distributions over DAGs
used in recent Bayesian CSL algorithms (Cundy et al., 2021; Lorch et al., 2021; Charpentier et al., 2022;
Deleu et al., 2022; Rittel & Tschiatschek, 2023; Annadani et al., 2023; Toth et al., 2024). We highlight
their limitations to assign equal probabilities to graphs of the same Markov equivalence class (Example 1 or
capture dependences of edgesin the graphs (Example 2) and compare their ability to match synthetic graph
distributions. In addition, we provide experimental and theoretical evidence that probabilistic models (Rittel
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& Tschiatschek, 2023; Deleu et al., 2022; Toth et al., 2024) and mixtures of them are more expressive simpler
particle distributions over a moderate number of graphs. We believe our work will be helpful to researchers
and practitioners alike by demonstrating shortcomings of recently proposed distributions over DAGs that
can limit the applicability of Bayesian CSL and proposing mixture models as an effective countermeasure.
In addition, we provide a recipe to evaluate the probability mass function of a given graph, a directed path
or a subgraph, that is induced by a generative model by marginalization over an auxiliary random structure
using importance samples.

Structure of the paper In section 2, we introduce our notation and background on causal discovery.
We proceed in section 3 with the presentation of the considered distributions over DAGs and discuss
their theoretical limitations. In section 4, we outline an efficient evaluation of generative models based on
importance sampling and derive analytically the minimal statistical divergences for particle distributions
with K graphs. Finally, we apply both techniques to supervised learning of different target distributions
in section 5 and conclude our paper in section 6.

2 Preliminaries

Probability and random variables We denote scalar random variables as y, random vectors as y,
and random matrices as Y. Single elements of a random vector or matrix are scalars and written as y
or Y respectively. The probability of a discrete random variable y taking the value y is expressed by the
probability mass function py(y) := P(y = y). When clear from the context, we omit the random variable
in the subscript of a probability mass function in favor of the parameters θ of the distribution to increase
readability, e.g., pθ(y). We mainly apply this concise notation in the main text to introduce the generative
models. With a slight abuse of terminology, we refer to a distribution Py by its induced probability mass
function py(y) = Py({y}). To distinguish approximations of the true target distribution, we denote model
distributions by Qy or simply qθ.

Functional causal models A functional causal model (FCM) is defined as the triple
MX := {X, (ϵ, Pϵ),f} consisting of a set of endogenous random variables X, a set of exogenous
noise variables ϵ with joint probability distribution Pϵ and a set of deterministic functions f , all three
indexed by [D] := {1, ..., D}. Each endogenous variable Xd of the model is generated by a function of a
subset of the endogenous variables X and its exogenous noise εd, i.e.,

Xd := fd(X, εd) . (1)

The distribution of Xd is implicitly defined as the pushforward measure of Pϵ through the causal mechanism
in Equation (1). The structure induced by the direct functional dependencies is often restricted to be acyclic
such that it can be represented by a directed acyclic graph DAG or—equivalently—its adjacency matrix
G ∈ G := {0, 1}D×D with a one-to-one correspondence between random variables and nodes. Let ∼d denote
the index set [D] \ {d}, then the d-th column of G encodes the parents PaG(Xd) ⊂ X∼d of a node/random
variable Xd, i.e., the subset of X∼d that has a direct influence on Xd via fd. Ancestors of a random variable,
AnG(Xd), have a directed path to Xd in the causal graph G and indirectly influence Xd. Their causal effect
is mediated by at least one parent of Xd (possibly themselves), it can be blocked by conditioning on all its
parents PaG(Xd). Children ChG(Xd) and descendants DeG(Xd) are affected by changes of the corresponding
node Xd and are defined complementary to parents and ancestors.

Causal structure learning The objective of causal discovery is to learn the underlying causal graph G
from observed random variables X that encodes the causal effects implied by the FCM MX. Throughout
this work, we assume causal sufficiency, i.e., all endogenous variables X are observable and the exogenous
noise variables ϵ are mutually independent. This implies that all dependencies and independencies between
the observed values of the random variables X result from their causal effects over the functions f and not
from some latent common causes, i.e., an unobserved shared ancestors of them. In addition, we assume that
all samples in the data set D := {X(n)}Nn=1 are generated i.i.d. from the FCM MX without any selection
bias for the generated samples, e.g., there is no conditioning on unobserved confounders.
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Without any assumptions on the functions f , the Markov equivalence class (MEC) of a causal graph G
can be consistently identified from D using conditional independence (CI) tests (Spirtes et al., 2000). This
equivalence class contains all DAGs that entail the same observed independence relations and can be com-
pactly represented by a completely partially directed acyclic graph (CPDAG), an acyclic mixed graph that
has the same adjacencies, Xi −Xj , and unshielded colliders, Xi → Xk ← Xj , as the underlying true graph
G, but with some of its edges remaining undirected. While CI tests can be easily parallelized and their
required overall number can be sequentially restricted by the individual test results (Spirtes et al., 2000),
the combination of the uncertainty attached to each test is non-trivial. Moreover, CI testing for continuous
random variables lacks statistical power against alternatives and suffers from the curse of dimensionality
(Shah & Peters, 2020).

Bayesian causal discovery Alternatively, score-based algorithms for causal discovery optimize a scalar
quantity that is typically derived from the likelihood of the observed data pΘ(D|G). Since the maximum
likelihood pΘ∗(D|G) can only improve with increasing number of allowed parents as covariates, regularization
of the number of edges is required to prevent estimating a fully connected DAG. Bayesian causal structure
learning is also based on the likelihood, but models the full data generating process for the so called evidence
p(D) that includes the uncertainty over model parameters Θ and a prior distribution over the causal graph
p(G):

p(D) =
∫ ∫ N∏

n=1
p(X(n)|Θ)p(Θ|G)p(G) dΘ dG =

∫
p(D|G)p(G) dG (2)

The marginal likelihood p(D|G) arises by averaging over the (conditional) prior distribution of model param-
eters p(Θ|G). In contrast to the maximum likelihood estimate pθ∗(D|G), it avoids overfitting to the noise
of the data D (Koller & Friedman, 2009). The posterior distribution over the causal p(G|D) that quantifies
the uncertainty over the true causal graph is obtained by Bayes’ formula:

p(G|D) = p(D|G)p(G)
p(D) . (3)

Computing the evidence involves marginalization over all DAGs and parameters of the likelihood and is
intractable. Therefore, approximate methods for Bayesian inference are needed. In the following we focus on
variational inference where the joint distribution p(G,D) is approximated by a generative model q(D|G)p(G),
and a variational family of distributions Q := {qϕ(G|D) |ϕ ∈ R} is specified for the posterior q(G|D). Both
steps involve parametric distributions over DAGs.

Bayesian model error Given a fixed data set D, deviations of a modeled posterior q(G|D) to the true
posterior p(G|D) can be backtracked to three different model errors as depicted in Figure 1. The modeled
marginal likelihood q(D|G) may induce a bias, with the particular case of the maximum likelihood estimate
leading to an overconfident prediction. Throughout this work, we assume a flexible model for the marginal
likelihood and focus on the role of the distribution over DAGs instead. The model for the prior distribution
q(G) directly constrains the belief that domain experts can express over the causal structure, but the
subjective bias vanishes in the asymptotic limit as long as it assigns each DAG some positive probability
mass. Lastly, the true posterior may not be in the variational family Q, i.e. cannot be expressed by q(G|D)
which poses a direct constrain for the outcome of the Bayesian analysis.

3 Distributions over DAGs

The number of DAGs for a given number of variables D is finite, but super-exponential in D (OEIS Founda-
tion Inc., 2023; Stanley, 1973). Consequently, using categorical distributions that distribute the probability
mass freely among all graphs quickly becomes infeasible, even for small D. However, for many applications,
it is not necessary to specify arbitrary probabilities to all DAGs, i.e. a smaller degree of freedom may suffice.
For causal discovery, the posterior distribution is expected to concentrate on graphs that are similar to the
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p(D|G)

q(D|G)

(b)
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q(G)

(c)

p(G|D)

q(G|D)

Figure 1: Modeling error in Bayesian causal discovery due
to approximations q of (a) the marginal likelihood function
and the graph model for (b) the prior and (c) the posterior
over the causal graph G.

G(1) X1 X2 X3

G(2) X1 X2 X3

G(3) X1 X2 X3

X1 −X2 −X3

Figure 2: Graphs of the MEC from
Example 1 with its CPDAG below.

ground truth graph according to which the observed data was generated. This motivates the design of proba-
bilistic models for graphs that are flexible enough to model any possible DAG G and assign probability mass
to some candidate graphs but require substantially fewer parameters than a general categorical distribution.

In the following, we discuss different models for distributions over DAGs proposed in recent works and
investigate their expressiveness. To enhance comprehensibility, we introduce them by their generative model
and provide the corresponding probability mass functions in Appendix A. As a summary, we visualize
their generative models in Figure 3 and provide a list of the number of learnable parameters for each
model in Table 1. To avoid limitations by specific functional relationships or subjective prior knowledge, we
consider independence relations as a general desideratum. In particular, we begin the investigation of the
expressiveness of the candidate graph distributions with the following Markov equivalence class that serves
as a running example.
Example 1. For a parametric linear model with exogenous Gaussian noise, the true causal graph is iden-
tifiable only up to its Markov equivalence class (Peters et al., 2017). Consider the simple case with three
variables and the chain graph X1 − X2 − X3 as the Markov equivalence class (MEC). Its edges cannot be
further oriented even in the asymptotic limit of infinite data. To represent the corresponding uncertainty
over the true DAG, all graphs of this MEC, the common cause, G(1) : X1 ← X2 → X3, and the two causal
chains, G(2) : X1 → X2 → X3 and G(3) : X1 ← X2 ← X3, should be assigned the probability 1

3 .

3.1 Independent edges

The arguably simplest probabilistic model for a distribution over a directed, not necessarily acyclic graph A
consists of a product over independent Bernoulli probabilities, one for each possible directed edge Xi → Xj :

A ∼ qϕ(A) with Aij ∼ qϕij (Aij) , (4)

where ϕ are the parameters of the Bernoulli distributions over the edges. While self-loops can be directly
ruled out by setting ∀i ∈ [D] : Aii = 0, the random graphs A drawn from this distribution can still have
cycles. For continuous optimization, acyclicity of a point predictor can be enforced using a nonnegative,
differentiable constraint function h : RD×D → R+ that evaluates to zero for any acyclic graph and otherwise
to some positive value that quantifies the deviation, e.g., number of closed cycles (Zheng et al., 2018; Yu
et al., 2019; Bello et al., 2022; Nazaret et al., 2024). For probabilistic models, h can be introduced within
an exponential prefactor to the unconstrained probability qϕ(A), i.e.,

qϕ,λ(G) ∝ exp(−λh(G)) qϕ(G) . (5)

For a sufficiently high prefactor λ, the resulting distribution q̃ϕ,λ(G) assigns only negligible probability mass
to any cyclic graph. For an independent factorization over the edges of the graph, this comes at the cost of
expressivity, since the resulting model is locked to some ordering of the nodes (Rittel & Tschiatschek, 2024).
Note that having a set of interdependent parameters ϕij does not prevent this, since the realizations of the
edges have to be coupled, e.g., two non-zero probabilities for Pϕij (Gij) and Pϕji(Gji) result in a positive
probability for the cycle Xi → Xj → Xi of length two. In Example 1, each chain implies a total order and
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Table 1: Overview of different candidates for distributions over DAGs alongside the number of learnable pa-
rameters which depends of the number of variables D, particles K, hidden neurons HN as well as embedding
and key size HE and HK . Their default values are reported in Appendix C

Graph model Figure Equation # Learnable parameters
DAG with independent edges 3a (5) D(D − 1)

Graph particles 3b (6) K
(
D(D − 1) + 1

)
DPM-DAG (Rittel & Tschiatschek, 2023) 3c (8) (D − 1) +D(D − 1)

ARCO-DAG (Toth et al., 2024) 3c (9) HN (D2 + 1) + (HN + 1)D +D(D − 1)
GFlowNet-DAG (Deleu et al., 2022) 3e (10) 2DHE + 7(HLD

2 + 16(HEHK +H2
K)) + 4H2

E

the common cause a partial order, all of them being incompatible with each other. Hence, such distribution
with independent edge probabilities can only concentrate its probability mass on one of the three graphs
resulting in a skewed uncertainty measure.

3.2 Particle representations & mixture model

Lorch et al. (2021) circumvents this limitation by modeling the graph posterior p(G|D) by a set of K
particles, each representing a single DAG G(k). The term particle distribution originates from the idea of
approximating a continuous density function by discrete probability masses. In the context of approximating
a discrete distribution, it rather refers to a simplified model that constrains the support to fewer possible
outcomes, e.g., K DAGs. The corresponding generative model can be expressed as

k ∼ qw(k) , G = G(k) , (6)

where w are the unnormalized weights defining the probability of each particle.

As an alternative to the constraint function h(G), a total order induced by the permutation π over X
naturally constrains a graph to be acyclic, i.e., the adjacency matrix of the permuted graph is upper-
triangular. Instead of modeling K deterministic graphs with some positive probability mass, K permutations
allow to model a random upper-triangular matrix U. Consequently, we no longer refer to it as a particle
distribution, but a probabilistic mixture model. Denoting Π as the permutation matrix corresponding to π,
the permuted random matrix U(Π(k)) generates a DAG G:

k ∼ qw(k) , U ∼ qϕ(U) , G = Π(k)TUΠ(k)︸ ︷︷ ︸
=:U(Π(k))

. (7)

The expressivity of the mixture model can be further increased by also modeling different distributions
for the upper-triangular matrix, i.e., U(k). Although smaller than the number of possible DAGs, with D!
the number of possible permutations is still super-exponential. Hence, only a very small fraction of all K
permutations can be represented by the previous model highlighting the limitation of particle distributions.
In the running Example 1 there are 25 possible DAGs and the stated MEC consisting only of the 3 graphs,
however, they are each admissible under a different total order. This illustrates that here at least K = 3
particles are required. Note that while the number of different MECs is still super-exponential, most of
them contain only very few graphs and almost 27 % of all classes consist of only a single graph (Gillispie
& Perlman, 2001). The upper bound on the size of a MEC is given by the completely connected chain
graph that summarizes D! graphs each of them following a different permutation. Evidently, splitting the
probability mass equally among a huge number of graphs may be analytically correct, albeit it provides
a poor trade-off between expressivity and computational efficiency represented by the number of learnable
parameters that scales with K. In case the distribution concentrates its probability mass on graphs that are
admissible for a low number of permutations, e.g., sparse graphs with multiple components, such a model
may suffice.
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Figure 3: Generative models of the candidate distributions over DAGs in section 3. (a) Probabilistic
adjacency matrix A with independent edges, (b) K graph distribution extending the former model by a
categorical distribution over k, (c) order-based model that use the permutation matrix Π to mask A, (d) K
order-based model, (e) sequence-based model that add edges autoregressively until the finalization signal
f = 1 is sampled or the DAG is complete.

3.3 Probabilistic models over orders

Several works apply the idea of an order-based search (Teyssier & Koller, 2005) in a probabilistic generative
model (Cundy et al., 2021; Charpentier et al., 2022; Rittel & Tschiatschek, 2023; Annadani et al., 2023).
Their shared underlying idea is to learn a total order of the variables that imposes an acyclicity constraint
on the (sampled) adjacency matrix A. Following the description of DPM-DAG (Rittel & Tschiatschek,
2023), we outline its generative model and provide the corresponding graphical model in Figure 3c. The
generative process starts by drawing a total order that defines a permutation Π of the variables. A permuted
upper-triangular matrix of ones M then defines a random acyclicity matrix M(Π) that is used to mask a
sample of an unconstrained adjacency matrix A as modeled in Equation (5), i.e.,

Π ∼ qψ(Π) , A ∼ qϕ(A) , G =
(
ΠTMΠ

)︸ ︷︷ ︸
=: M(Π)

◦A . (8)

Example 1 shows the limitation of the Plackett-Luce (PL) distribution (Plackett, 1975) for causal discov-
ery (Rittel & Tschiatschek, 2023; Toth et al., 2024) that is used for sampling the permutation . Both chains
imply a total order of the three variables, but reversed ones. In the PL model, their permutations can only
receive the same probability mass in the case of uniform weights for all three variables, yet the probability
for the two causal chains is then upper-bounded by 1

6 and cannot take the value of 1
3 . Some remaining

probability mass is then concentrated on other graphs that do not belong to the MEC. This motivated the
ARCO-DAG model (Toth et al., 2024), an autoregressive model over causal orders that computes the weights
for the categorical sampling without replacement at each sampling stage conditionally on the previous drawn
sequence, i.e.,

qψ(π) =
D∏
d=1

qψ(d)
(
π(d)

)
with ψ(d) = fψ

(
{π(i)}di=1

)
. (9)

The function fψ : RD×D 7→ [D] takes a permutation matrix where some rows are still zeros as input and
predicts the weights for sampling the next variable in the order. For their experiments, the authors of ARCO
applied a multilayer perceptron with a single hidden layer with H > D neurons. To avoid marginalizing over
the set of possible parents under a sampled permutation as in Toth et al. (2024), the same distribution over
an unconstrained graph may be used yielding Equation (8) but with an autoregressive distribution over the
permutation. In case of Example 1 where the probability mass should be split equally on all graphs of the
MEC X1 −X2 −X3, this is consistent with setting PA13(1) = PA31(1) = 0 and PAij

(1) = 1 otherwise.

3.4 Fully autoregressive model

In all covered candidate models for distributions over DAGs, the unmasked edges are still sampled from
independent Bernoulli distributions as stated in Equation (5). Besides acyclicity, the edges of the causal
graph drawn from these distributions are not coupled limiting the models’ expressivity.
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Figure 4: Graphs of Example 2 that all share the highlighted edge between X1 and X2.

Example 2. Consider the four DAGs depicted in Figure 4 with G(1) being the true causal graph. As-
sume the functional relationship between X1 and X2 is identifiable and, hence, the cumulative probability
of all graphs that contain this edge should be very high in the posterior. If the structural equation for
variable X3, fX3(X1,X2, ϵ3), depends only on both variables X1 and X2, but not a single one alone, e.g.,
f3 = [X1 > a][X2 > b] + ϵ3 , then the edges are consequently coupled. This implies that the posterior con-
centrate its probability mass on G(1) and G(2) that misses X1 and X3 as causes of X2. The graphs G(3) and
G(4) with only X1 or X2 as causes of X3 should be assigned small probability in this setting.

Deleu et al. (2022) construct a DAG by adding edges sequentially, we refer to their graphical model as
the GFlowNet-DAG model. A sampled sequence of distinct edges S = (S1, . . . , SE) ∈ S uniquely defines a
DAG G over a mapping g : S 7→ G. Note that E! different sequences can yield the same graph G where
E := |S| equals its number of edges |G|. The underlying sampling is based on a transformer architecture
tϕ : G 7→ RD×D that autoregressively computes the parameters φ defining the probabilities for potential new
edges, φ := tϕ(S:i−1). At each sampling step i, acyclicity is enforced by masking of the edges that would
create a cycle, i.e., the transitive closure of the adjacency matrix of the graph that decodes ancestral relations.
After the addition of a new edge, the ancestral mask is updated and the iterative sampling continues until
a (binary) stop signal fi = 1 is sampled indicating that the graph sample is final, or the DAG is fully
connected):

Si ∼ qϕ(Si|S:i−1) , fi ∼ qϕ(fi|S:i−1) (10)

The probability of stopping qϕ(1|S:i−1) theoretically guarantees that each DAG can be assigned an arbitrary
probability mass provided that the function tϕ has the capacity to model the parameter for the transition
probabilities between different states exactly.

4 Evaluation

In contrast to Bayesian causal discovery algorithms where an observed data set is the basis for unsupervised
learning of the causal graph, we are interested in comparing different models for distributions over DAGs re-
garding their expressiveness for known target distributions. The supervised setting is motivated by shielding
of other sources of error, including any bias due to the choice of functional relationships, prior distributions
over the data, or the size of the observed training data.
To demonstrate the limitations of the candidate models for distribution over DAGs obtained in section 3, we
fit each candidate model qG to a specified target distribution pG. The target distribution is either derived
by the MEC class from Example 1 or a synthetically generated distribution that arises by concentrating the
probability mass around a target graph using the structural Hamming distance (SHD).

For training of the parameters ϕ with gradient descent, we take the forward KL divergence between the target
distribution pG and the candidate distribution qG as loss function and approximate it using samples from
the target distribution. Due to the limited support of particle distributions, we evaluate the fitted candidate
distribution with the reverse KL divergence DKL(qG∥pG) and the total variation distance DTV(qG∥pG).
In contrast to its backward formulation, the forward KL divergence estimates the log-likelihood ratio using
samples from the target distribution. During supervised training with gradient descent, this ensures finding
the region of the support where the probability mass is concentrated. To illustrate this important detail
consider the GFlowNet model where the generation of a DAG starts with the empty graph. If the probability
mass is concentrated around graphs with a moderate number of edges, almost no signal for learning is
provided for graphs with only one or two of its edges.
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4.1 Particle distributions

Lemma 1. The reverse KL-divergence as well as the total variation, Hellinger and Bhattacharyya distance
between a discrete target distribution pG and a particle representation as candidate model qG are minimized if
the particles of the candidate qG represent the items with the highest probability mass in the target distribution
pG and have their normalized probability mass.

The minimal reverse KL divergence and total variation distance are given by:

min
q∈Q

DKL(qG∥pG) = − log
K∑
k=1

p(G(k)) (11)

min
q∈Q

DTV(qG∥pG) = 1−
K∑
k=1

p(G(k)) (12)

with ∀k ∈ [1,K] : G(k) = arg max
G∈G\{G(i)}i<k

p(G) . (13)

We present the full derivation of all minima and the proof of Lemma 1 in Appendix D.

4.2 Semi-implicit generative models

A latent generative model for G is defined by a sampling procedure using some auxiliary random objects
Y ∼ qϕ. A mechanism g maps the latent samples Y to graphs, i.e., G = g(Y), and induces the joint
distribution q(G,Y). For DAGs Y can be a combination of a permutation π and an unconstrained adjacency
matrix A or alternatively a sequence of edges S. Such implicit distribution cannot be directly evaluated in
a graph G∗ sampled from the target distribution since g is in general not injective. The joint distribution
has to be marginalized either by explicit summation over Y or sampling of Y, i.e.,

qG(G∗) =
∑
Y

[
G∗ = g(Y )

]
qϕ(G,Y ). (14)

We leverage importance sampling to efficiently estimate the marginal probability of G∗ using a low number
of samples of Y∗ that only generates samples of the target graph G∗ = g(Y ∗):

qG(G∗) =
∑

Y ∗: f(Y ∗)=G∗

qϕ(G∗,Y ∗) = E(G∗,Y∗)∼q∗
G

[
qϕ(G∗,Y∗)
q∗
ϕ(G∗,Y ∗)

]
(15)

The proposal distribution q∗
ϕ is derived from the distribution Qϕ by constraining the discrete samples of

Y to Y ∗. Note that due to the parameter sharing of ϕ, the proposal distribution is not constant during
training and is updated jointly with the candidate distribution at every iteration.
We provide further details on the implementation in Appendix B. While we present the proposed importance
sampling to evaluate the probability of a full graph, its application to directed paths or subgraphs is straight-
forward, following the same rational.

5 Experiments

In our experiments, we compare the following models from section 3 and Table 1:

• distributions over a fixed number of DAGs (K graph particle distribution),

• a discretized version of DPM-DAG (Rittel & Tschiatschek, 2023) that we refer to as reinforced
probabilistically masked DAG (RPM-DAG), since the score-function gradient estimator is applied
instead of pathwise Gumbel-SoftSort gradient estimation,

• ARCO-DAG, the autoregressive model over the causal order (Toth et al., 2024),
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• Mixture models of RPM- and ARCO-DAG, that introduce an additional categorical random variable
k as depicted in Figure 3d (with K = 1 equals the base model),

• GFlowNet-DAG(Deleu et al., 2022), a GFlowNet that generates all possible DAGs over sequential
addition of edges starting with the empty graph.

We minimize the forward KL divergence with the Adam Optimizer with decoupled weight decay (Loshchilov
& Hutter, 2019) over 1000 optimization steps. Further details and the used hyperparameters for the super-
vised training of each model are provided in Appendix C.

5.1 Markov equivalent graphs

The first experiment consists of the MEC represented by the chain graph A−B−C motivated in Example 1.
The target distribution assigns all three graphs of the equivalence class the same probability of a third.
In Table 2a we report the mean of the reverse KL divergence and the total variation distance together with
their standard deviations error over 20 independent runs for the RPM-DAG, ARCO-DAG, and GFlowNet-
DAG model. For the particle distributions we compute the optimal empirical values according to Equa-
tion (11), (12) and (13).

The results align with the theoretical analysis that RPM-DAG fails to distribute the probability equally
among all graphs of the MEC. The observed preference for the common cause G(1) is a model bias arising
from the fact that G(1) induces only a partial order that is compatible with two total ones.

For K = 3, a particle distribution can theoretically match the target distribution, whereas a reduced num-
ber of modeled graphs is limited to an overconfidence estimation that is outperformed by ARCO-DAG and
GFlowNet-DAG. Our experimental result for a mixture of 3 RPM-DAG models further indicates that these
optimal theoretical values are not reached during model training. With increasing mixture models, the sta-
tistical divergence only decreases slowly, while their standard deviations increases initially, before it decreases
again. The standard errors underline the validity of the reported mean values, since they are by a factor of√

20 smaller than the reported standard deviations. The high variance is due to some outlier, illustrating
that there is a regime where training is less stable.

By contrast, the results for ARCO-DAG demonstrate that it can overcome the limitations of RPM-DAG by
a simple autoregressive model for the permutation weights. In comparison to the GFlowNet-DAG model,
it yields a considerable lower total variation distance, is more stable and much faster in training as well as
evaluation, due to the reduced number of model parameters (see Table 1). For mixtures of 10 models, the
situation slightly reverses with 10-RPM-DAG yielding a smaller statistical distance than 10-ARCO-DAG.

Note that the structure consisting of only three variables also appears in graphs with more variables and
comes w.l.o.g.. In the case of a graph with C unconnected graph components, each consisting of a graph
of the simple MEC class, its MEC contains 3C graphs. Under assumed ideal conditions and a supervised
setting, a particle method picks K graphs of them with equal probability. Equation (11) and (12) then
imply high statistical divergences that are not competitive with parametrized distributions over orders, e.g.,
RPM-DAG, that scale well for unconnected components.

5.2 Coupled edges

Dependent edges in the posterior as in Example 2 motivate the second experiment in which we consider the
corresponding graphs of Figure 4 with the following probabilities. The target distribution concentrates 60%
of the probability mass on the graph G(2) that misses X1 and X2 as parents of X3, further 30% are assigned
to the true causal graph G(1). . To represent a coupling of the two causes, the graphs G(3) and G(4) that
miss either of these parents get only a probability of 0.05 each. In Table 2b the corresponding metrics for
20 runs are listed, following the same reporting as in section 5.1. Both RPM-DAG and ARCO-DAG, assign
the graphs G(3) and G(4) too high probability as they fail to account for the coupling of the edges X1 → X3
and X2 → X3. Due to its autoregressive model over edges, GFlowNet-DAG can approximate the target
posterior with very high accuracy in terms of individual graph probabilities as well as the two evaluated
statistical divergences. By design, a particle distribution is not constrained by dependent edges. Since 90%

9
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Table 2: Reverse KL divergence DKL, total variation distance DTV and graph probabilities q(G) for different
candidate models qG and underlying target distribution pG. Empirical means and standard deviations are
reported for 20 runs, except for the particle representations for which their analytical values are computed
using Equation (11) and (12).

(a) Example 1: MEC class X1 −X2 −X3 .

qG DKL(qG∥pG) DTV(qG∥pG) q(G1) q(G2) q(G3)
pG 0 0 0.3̄ 0.3̄ 0.3̄

1 graph particle 1.0986 0.6̄ 1 0 0
2 graph particles 0.4055 0.3̄ 0.5 0.5 0
3 graph particles 0 0 0.3̄ 0.3̄ 0.3̄

RPM-DAG 0.32673± 0.00004 0.34377± 0.00003 0.53318± 0.00001 0.16145± 0.00002 0.16145± 0.00002
5-RPM-DAG 0.05 ± 0.12 0.05 ± 0.11 0.36 ± 0.07 0.31 ± 0.06 0.07 ± 0.06

10-RPM-DAG 0.0013 ± 0.0009 0.003 ± 0.008 0.335 ± 0.007 0.333 ± 0.001 0.331 ± 0.009
ARCO-DAG 0.00370± 0.00005 0.0038 ± 0.0003 0.3322 ± 0.0007 0.3320 ± 0.0007 0.3321 ± 0.0006

5-ARCO-DAG 0.0021 ± 0.0006 0.003 ± 0.004 0.333 ± 0.004 0.332 ± 0.005 0.333 ± 0.002
10-ARCO-DAG 0.0015 ± 0.0006 0.022 ± 0.0021 0.333 ± 0.002 0.3327 ± 0.0017 0.3324 ± 0.0012
GFlowNet-DAG 0.004 ± 0.015 0.02 ± 0.04 0.328 ± 0.026 0.34 ± 0.04 0.328 ± 0.023

(b) Example 2: Coupled edges X1 → X3 ← X2 and identifiable causal effect X1 → X2 .

qG DKL(qG∥pG) DTV(qG∥pG) q(G1) q(G2) q(G3) + q(G4)
pG 0 0 0.3 0.6 0.1

1 graph particle 0.5108 0.4 0 1 0
2 graph particles 0.1054 0.1 0.3̄ 0.6̄ 0
3 graph particles 0.0513 0.05 0.3158 0.6316 0.0526
4 graph particles 0 0 0.3 0.6 0.1

RPM-DAG 0.333 ± 0.009 0.36 ± 0.01 0.126 ± 0.012 0.414 ± 0.023 0.44 ± 0.02
2-RPM-DAG 0.0024 ± 0.0008 0.0046 ± 0.0047 0.2986 ± 0.0006 0.5970 ± 0.0046 0.1004 ± 0.0011
ARCO-DAG 0.328846± 0.000002 0.355704± 0.000012 0.122402± 0.000015 0.42189± 0.00003 0.45447± 0.00002

2-ARCO-DAG 0.00126 ± 0.00005 0.0021 ± 0.0017 0.2999 ± 0.0020 0.5993 ± 0.0020 0.1004 ± 0.0002
GFlowNet-DAG 0.0001 ± 0.0003 0.004 ± 0.004 0.30 ± 0.05 0.599 ± 0.004 0.099 ± 0.004

of the probability is concentrated on two graphs, a reasonable approximation can be obtained by using a
mixture of only two graphs in this particular example. However, our results show that both probabilistic
mixture model, with two components of RPM- or ARCO-DAG models each, outperform the simple mixture
of graphs substantially.

5.3 Concentration of posterior mass

For an identifiable FCM and a high number of samples, the posterior should be concentrated on graphs
that show a high likelihood. In the idealized setting of perfect regression of a child on its parents, the
likelihood can be expected to peak for the true underlying graph G0 provided that parameter uncertainty
or regularization prevents superfluous edges that are not in G0. This implies that high-scoring graphs are
’similar’ to G0 implied by the FCM.

In the absence of an analytic posterior that motivates such similarity, we generate a synthetic target distri-
bution around the assumed maximimum-a-posteriori (MAP) graph G0 depicted in Figure 5 that has positive
support for all 543 possible DAGs with 4 nodes. We start by assigning probability masses to the groups
of graphs that have a structural Hamming distance (SHD) up to 4, i.e., 4 different entries in the adjacency
matrix, and split the remaining probability mass equally among all graphs with greater SHD. For the five
groups with SHD up to 4, we distribute their cumulated probability masses equally among all graphs within
the respective group. The target distribution is summarized in Table 3 which lists the probability masses
for the groups of graphs with the same SHD along side individual ones.
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Table 3: Target distribution concentrated around
the MAP graph G0. Graphs with the same SHD,
G ∈ GSHD, are assigned the same probability.

SHD p(GSHD) |GSHD| p(G ∈ GSHD)
0 0.15000 1 0.15000
1 0.42500 8 0.05313
2 0.22500 28 0.00804
3 0.10000 61 0.00164
4 0.05000 94 0.00053
5 0.01581 111 0.00014
6 0.01439 101 0.00014
7 0.01068 75 0.00014
8 0.00627 44 0.00014
9 0.00242 17 0.00014

10 0.00043 3 0.00014

Table 4: Statistical divergences for different
candidate models for the synthetic posterior
distribution in Table 3.

qG DKL(qG∥pG) ↓ DTV(qG∥pG) ↓
1 graph particle 1.8971 0.8500

10 graph particles 0.5395 0.4170
25 graph particles 0.3516 0.2964
50 graph particles 0.1969 0.1787

100 graph particles 0.1042 0.0989
150 graph particles 0.0751 0.0723
250 graph particles 0.0426 0.0417

RPM-DAG 0.133± 0.008 0.166± 0.007
2-RPM-DAG 0.107± 0.009 0.149± 0.009
3-RPM-DAG 0.070± 0.007 0.133± 0.006
4-RPM-DAG 0.061± 0.006 0.123± 0.006
5-RPM-DAG 0.057± 0.005 0.120± 0.005

10-RPM-DAG 0.041± 0.005 0.09 ± 0.01
20-RPM-DAG 0.033± 0.004 0.072± 0.006

ARCO-DAG 0.087± 0.009 0.146± 0.007
2-ARCO-DAG 0.079± 0.010 0.137± 0.008
3-ARCO-DAG 0.076± 0.010 0.135± 0.008
4-ARCO-DAG 0.071± 0.009 0.130± 0.007
5-ARCO-DAG 0.07 ± 0.01 0.130± 0.007

10-ARCO-DAG 0.058± 0.007 0.114± 0.007
20-ARCO-DAG 0.043± 0.006 0.09 ± 0.1
GFlowNet-DAG 0.25 ± 0.17 0.25 ± 0.08

X1 X2 X4 X3

Figure 5: Assumed true graph G0 representing the
MAP graph in the posterior modeled in Table 3.

We report in Table 4 the mean values and standard deviations for the statistical divergences over 20
independent runs for all candidate models, except the particle representations for which the optimal values
are computed analytically using Equation (11) and (12). The results highlight the expressivity of the
RPM-DAG and its extension ARCO-DAG that both outperform a particle distribution consisting of the 50
graphs with the highest probability in the target distribution that account for a cumulative probability of
86.3%. A single ARCO-DAG yields lower statistical divergences than a mixture of 2 RPM-DAG models
in this very setting. When comparing mixture models with K ≥ 3, it can be observed that mixtures of
RPM-DAG yields better results than ARCO-DAG. Although we trained in an idealized very low-dimensional
setting with samples drawn from the target distribution, the performance of the GFlowNet-DAG model
does not match its performance from section 5.1 and 5.2. We conjecture that the gradients from a changing
variety of different graphs do not yield a sufficiently stable training signal that is necessary to tune the
transformer network.

6 Conclusion

Bayesian causal discovery promises uncertainty quantification in the prediction of the causal graph. We
reviewed several candidate models for distribution over DAGs and investigated the limitations of their ex-
pressivity. To minimize confounding factors such as the influence of functional relationships or the size of the
training set, we considered an idealized supervised setting that can also be used to specify prior distributions.
We successfully showed in our theoretical analysis and experimental results that all considered candidate
models, besides the autoregressive GFlowNet-DAG model, are theoretically not sufficiently expressive to
match simple target distributions in which edges are coupled. While GFlowNet-DAG satisfies the theoreti-
cal requirements, we cannot verify its expressiveness in a low-dimensional experiment where graph samples
are drawn from the target distribution with support over all possible DAGs. Since causal structure learning
is typically an unsupervised problem, this poses a major limitation to this model.
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Coupled edges due to interaction effects pose a general challenge in causal structure learning and affect
most algorithms—not only Bayesian approaches. Our results suggest that a mixture of a small number
of simple probabilistic models as RPM-DAG models may approximate distributions with coupled edges
sufficiently well in practical applications and outperform particle distributions with a moderate number of
modeled graphs. Its extension, ARCO-DAG is more expressive w.r.t. probabilistic causal orders and shows
competitive performance to GFlowNet-DAG, while having a substantially lower number of parameters and
is more stable in training. When comparing mixture models of RPM- and ARCO-DAG, the simpler model
outperforms the latter more expressive model for 10 mixture components consistently in all experiments.
Therefore, we conjecture that a mixture of RPM-DAG models is particularly suited to scale Bayesian causal
discovery to higher numbers of variables.
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A Probability mass functions over DAGs

For conciseness, we present in section 3 only the generative models for DAGs that implicitly induce a
probability distribution. In the following, we provide their analytic probability mass functions.

A.1 Independent Edges

qA(A) =
D∏
i̸=j

qAij
(Aij) (16)

qG(G) = 1
Z

exp
(
− λh(G)

)
qA(G) with Z :=

∑
G

exp
(
−λh(G)

)
qA(G) . (17)

A.2 Particle distribution

qG(G) =
K∑
k=1

[
G(k) = G

]
qk(k) , (18)

A.3 Probabilistically masked DAG

qG(G) =
∑
Π,A

[
M (Π) ◦A = G

]
qΠ(Π) qA(A) with M (Π) := ΠTMΠ . (19)

Sampling without replacement from a categorical distribution with some fixed weights {wd}Dd=1 is equivalent
to drawing a permutation over [D] and known as the Plackett-Luce (PL) distribution (Plackett, 1975). At
each sampling stage d the categorical weights for the remaining variables that were not yet sampled are
normalized :

qπ(π) =
D−1∏
d=1

qπ(d)
(
π(d)

)
=
D−1∏
d=1

ψπ(d)∑D
i=1 ψi −

∑
j<d ψπ(j)

. (20)

A differentiable, continuous relaxation of the discrete sampling of permutation matrices Π can be obtained
by pairing the Gumbel-Softmax trick (Maddison et al., 2014) with Softsort (Prillo & Eisenschlos, 2020).

A.4 Mixture of DAGs with probabilistic entries

qG(G) =
K∑
k=1

∑
U

[
U (Π(k)) = G

]
qU(U) qk(k) with U (Π(k) := Π(k)TUΠ(k) . (21)

A.5 Autoregressive model over all potential edges

Denoting the mapping between the sequence of edges S ∈ S to a graph G by g : S 7→ {0, 1}D×D, the
probability of sampling a graph G equals:

qG(G) =
∑
S

qG,S(G,S) =
∑
S

[
G = g(S)

]
qS(S) . (22)

qS(S) =
(

E∏
i=1

qSi|S:i−1(Si|S:i−1)
)(

E−1∏
j=1

qfj |S:j−1(0|S:j−1)
)
qfE |S:E−1(1|SE−1) . (23)

The sequential process of a GFlowNet (GFN) itself defines a DAG where all non-leafe nodes represent the
states of an unfinished graph G(i) = g(S:i). Starting with the empty graph state as the root node and
probability 1, it splits the probability of a state representing a preliminary graph among its children who are
either other preliminary graphs with an additional edge or finalized graphs.
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B Importance sampling for parametrized distributions with an auxiliary discrete
structure

Implicit generative models for discrete structures such as DAGs samples substructures from categorical
distributions. The weights of discrete objects, e.g., edges, that do not appear in some target structure
can be masked to 0. Since the relative probabilities of admissible substructures are preserved then, it is
equal to sampling form the unconstrained distribution and rejecting any sample that is not admissible under
the target structure. The resulting proposal distribution Q⋆ϕ restricts and is consequently optimal to the
candidate distribution Qϕ at any optimization step due to the shared parameters. By contrast, standard
Monte Carlo is particular unsuited to estimate the probabil

Order-based model For an order-based models as described in section 3.3 and depicted in Figure 3c, e.g.,
RPM-DAG and ARCO-DAG, the weights of the Bernoulli distribution for any edges that does not appear
in the target graph can be set to zero, i.e., ∀i, j withG⋆

ij = 0 : ϕij = 0. In addition, the sampling of a total
order in Equation (20) can be constrained to the (potentially partial) order induced by the target graph by
setting the weights of all variables to 0 as long as their parents have not been sampled as a predecessor in
the order. DP-DAG and DP-DAG applies

Sequence-based model Sampling of the next edge in a sequence as described in section 3.4 and depicted
in Figure 3e can be directly constrained to the edges that appear in the target graph. The ancestral masking
that ensures acyclicity remains unaffected.

C Experimental Parameters

In the experiments in section 5.1 and 5.2, we evaluate the forward KL divergence in all three, respectfully
four, graphs with positive probability mass. The probability of a graph under the candidate model is
approximated by Equation (15) using importance samples (IS). To speed up the calculations during training,
the number of IS is chosen to be smaller than for the final evaluation of the trained model. The learning rate
was chosen by a grid search over {1, 5×10−1, 1×10−1, 5×10−2, 1×10−2, 5×10−3, 1×10−3, 5×10−4, 1×10−4}.
Training was performed over 1000 optimization steps to account for the instability of GFlowNet-DAG. We
document the used hyperparameters in Table 5.
Due to the low number of DAGs, our first experiment (Section 5.1) allows to evaluate all 25 graphs
within a single forward pass during training (hence, 1 optimization step equals 1 epoch). To account
for the higher number of possible sequences, we average the probability of sampling a target graph
from the model distribution using 10 importance samples for GFlowNet-DAG in contrast to a single
one. For evaluation of each graph probability we drew 100 importance samples for all methods. In the
second experiment (Section 5.2) we had to limit the number of samples from the target distribution for
a single optimization step. Due to the high number of trainable parameters we decided to go with 25
instead of 100 samples from the target distribution and 5 instead of 10 for the GFlowNet-DAG model.
By contrast, we doubled the number of importance samples to 20 during evaluation of each of the 543 DAGs.

GFlowNet-Dag The transformer architecture for the GFlowNet-Dag model follows the official implemen-
tation provided on https://github.com/tristandeleu/jax-dag-gflownet, as default parameters it uses
an embedding size of HE = 128, a key size of HK = 64 and HL = 7 layers of Transformer blocks.

ARCO-DAG The autoregressive neural network of ARCO-DAG consists of a simple two layer perceptron
with HN = 30 hidden neurons and ReLU-activations and follows the official implementation on https:
//github.com/chritoth/bci-arco-gp/.
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Table 5: Hyperparameters.

(a) For the experiments in section 5.1 and 5.2.

Model QG Learning rate # forward KL samples # IS for training # IS for evaluation
RPM-DAG 5 × 10−1 ”all“ 1 100

ARCO-DAG 5 × 10−1 ”all“ 1 100
GFlowNet-DAG 1 × 10−3 ”all“ 10 100

(b) For the experiments in section 5.3.

Model QG Learning rate # forward KL samples # IS for training # IS for evaluation
RPM-DAG 5 × 10−2 100 10 10

ARCO-DAG 5 × 10−2 100 10 10
GFlowNet-DAG 1 × 10−3 25 5 20

D Particle distributions

In the following we present a proof of Lemma 1 and derive the minimal values for the four statistical distances
between a discrete target distribution P and a reduced distribution Q with only K particles.

D.1 Minimal total variation distance

The total variation distance DTV between the candidate and target distribution, qG and pG, can be rewritten
as:

DTV(qG∥pG) = 1
2
∑
G

|q(G)− p(G)| = 1
2

( ∑
G∈G\{G(k)}K

k=1

p(G)

︸ ︷︷ ︸
= 1−

K∑
k=1

p(G(k))

+
K∑
k=1

∣∣∣q(G(k))− p(G(k))
∣∣∣) . (24)

In the RHS of Equation (24) the sum over all graphs is split into two terms. The graphs that are not in the
support of the particle distribution qG lead to a distance that is independent of the weights for the particles.
The second term measures the absolute deviations for the probabilities of the K graphs that are assigned
non-zero probabilities in qG.
For equality of the probability masses p(G(k)) and q(G(k))∀k ∈ [K], it would be minimized. Due to the
normalization constraint, the accumulated probability mass of the not modeled graphs has to be distributed
among the K graphs in qG, leading to q(G(k)) ≥ p(G(k))∀k ∈ [K]:

min
qinQ

DTV(qG∥pG) = 1
2

(
1−

K∑
k=1

p(G(k)) +
(

K∑
k=1

q(G(k))− p(G(k))
))

= 1−
K∑
k=1

p(G(k)) . (25)

Consequently, both sums in Equation (25) amount precisely to the loss of the accumulated probability mass
for the graphs not modeled by qG and the total variation distance is minimized when qG assigns non-zero
probability to the K graphs with the highest probability in pG:

∀k ∈ [K] : G(k) = arg max
G∈G\{G(i)}i<k

pG(G) . (26)

In general their corresponding probabilities q(G(k) are not unique. The approximated probability distribu-
tion qG with the minimal DTV to pG does not constrain how the additional probability mass is distributed.

In principle the probability of a single graph could account for the missing accumulated probability mass
yielding only a single biased value, but distorting the relative probabilities. This limits the utility of such
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an approximated distribution heavily and motivates the following constraint:

∀i ̸= j ∈ [K] : q(G(i))
q(G(j)) = p(G(i))

p(G(j)) . (27)

Preserving the relative probabilities of pG in qG uniquely defines qG by normalized probabilities

q(G(k)) = p(G(k))∑K
j=1 p(G(j))

, (28)

and yields a approximation that is for all K graphs overconfident w.r.t to the approximated distributed pG,
i.e., q(G(k)) > p(G(k))∀k ∈ [K] ⊂ |G|.

D.2 Minimal Kullback-Leibler divergence

In contrast to the total variation distance, the KL divergence is not symmetric. Due to the smaller support
of the candidate distribution qG compared to the target distribution over all DAGs pG only the reverse KL
divergence, DKL(Q|P ), is properly defined. Imposing normalized probabilities as in Equation (28)to preserve
the relative probabilities of the graphs in the target distribution pG simplifies the KL divergence to:

DKL(qG∥pG) =
∑
G∈G

q(G) log q(G)
p(G) =

K∑
k=1

q(G(k)) log q(G
(k))

p(G(k))

= −
K∑
k=1

q(G(k)) log
K∑
j=1

p(G(j)) = − log
K∑
j=1

p(G(j)) . (29)

Hence, the constrained KL divergence is minimized, when qG assigns non-zero probabilities to the K graphs
with the highest probabilities in pG as in Equation (6).

D.3 Minimal Hellinger & Bhattacharyya distance

The derivation of the minimal Hellinger distance DH follows analog to the one in section D.1 with the same
constraint of preserved relative probabilities from Equation (28):

DH
2(qG∥pG) = 1

2
∑
G

(√
q(G)−

√
p(G)

)2

= 1
2

 ∑
G∈G\{G(k)}K

k=1

p(G) +
K∑
k=1

(√
q(G(k))−

√
p(G(k))

)2


= 1
2

(
1 +

K∑
k=1

q(G(k))− 2
√
q(G(k))p(G(k))

)

= 1
2

2− 2√∑K
j=1 p(G(j))

K∑
k=1

p(G(k))


= 1−

√√√√ K∑
k=1

p(G(k)) . (30)

The Bhattacharyya distance DB can be directly derived from the Hellinger distance DH by:

DB(qG∥pG) = − ln
(∑
G∈G

√
q(G)p(G)

)
= − ln

(
1−DH

2(qG|pG)
)

= −1
2 ln

K∑
k=1

p(G(k)) . (31)

Both are minimized by selecting the graphs with the hightest probability in pG as in Equation (26).
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